A general implicit iteration for finding fixed points of nonexpansive mappings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence of Modified Implicit Iteration Processes for Common Fixed Points of Nonexpansive Mappings

Throughout this paper, let H be a real Hilbert space with inner product 〈·,·〉 and norm ‖ · ‖. Let C be a nonempty closed convex subset of H , we denote by PC(·) the metric projection from H onto C. It is known that z = PC(x) is equivalent to 〈z− y,x− z〉 ≥ 0 for every y ∈ C. Recall that T : C → C is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. A point x ∈ C is a fixed point of T provided ...

متن کامل

An Explicit Viscosity Iterative Algorithm for Finding Fixed Points of Two Noncommutative Nonexpansive Mappings

We suggest an explicit viscosity iterative algorithm for finding a common element in the set of solutions of the general equilibrium problem system (GEPS) and the set of all common fixed points of two noncommuting nonexpansive self mappings in the real Hilbert space.  

متن کامل

Solutions of variational inequalities on fixed points of nonexpansive mappings

n this paper , we propose a generalized iterative method forfinding a common element of the set of fixed points of a singlenonexpannsive mapping and the set of solutions of two variationalinequalities with inverse strongly monotone mappings and strictlypseudo-contractive of Browder-Petryshyn type mapping. Our resultsimprove and extend the results announced by many others.

متن کامل

Explicit iteration method for common fixed points of a finite family of nonself asymptotically nonexpansive mappings

Suppose that K is a nonempty closed convex subset of a real uniformly convex Banach space E , which is also a nonexpansive retract of E with nonexpansive retraction P . Let {Ti : i ∈ I } be N nonself asymptotically nonexpansive mappings from K to E such that F = {x ∈ K : Ti x = x, i ∈ I } 6= φ, where I = {1, 2, . . . , N }. From arbitrary x0 ∈ K , {xn} is defined by xn = P((1− αn)xn−1 + αnTn(PT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.08.01